Using R to examine a Growth Curve and calculate Doubling Time

Chris Seidel

Pichia pastoris was grown in liquid culture. Aliquots were taken at various times postinnoculation, and measured by OD600. When the aliquots surpassed the linear range of the spectrophotometer they were diluted before reading. Thus the input data file has 5 columns: time post-innoculation, minutes, dilution factor, OD reading, derived OD.
1.) Read the data into R

```
# read the data into }R\mathrm{ from a tab-delimited text file
gdata <- read.table(file="yeast_timecourse.txt", sep="\t", header=T)
# what are the column names?
colnames(gdata)
```

2.) plot the derived OD600 readings as a function of time

```
# columns of interest are:
# minutes (2nd column) and OD600_derived (5th column, derived OD600)
# examine a plot of OD versus time
plot(gdata[,2], gdata[,5])
# could also use column names to specify
columns:
plot(gdata[,"minutes"],
gdata[,"OD600_derived"])
# make the plot look nicer
plot(gdata[,2], gdata[,5], main="OD versus
Time", xlab="minutes", ylab="OD600")
3.) Find the portion of the curve which is linear during exponential phase growth (hint: plot log of OD versus time)
```



```
# since this is a growth curve, we want to plot the log
```


since this is a growth curve, we want to plot the log

of the OD

of the OD

plot(gdata[,2], log(gdata[,5]), main="OD versus Time", xlab="minutes",
plot(gdata[,2], log(gdata[,5]), main="OD versus Time", xlab="minutes",
ylab="log(0D600)")
ylab="log(0D600)")

pick the part of the curve that looks linear

pick the part of the curve that looks linear

maybe points 3 through 6?

```
# maybe points 3 through 6?
```

4.) use the linear modeling function to to perform regression, and use the resulting slope to find the yeast doubling time.

```
# use lm() to fit this part of the curve
# fit y as a function of x (or OD as a function of time)
# but only use the points of interest
lm(log(gdata[3:6,"0D600_derived"]) ~ gdata[3:6,"minutes"])
```

```
# save the linear fit to an object called "fit"
fit <- lm(log(gdata[3:6,"0D600_derived"]) ~ gdata[3:6,"minutes"])
# give the fit to the abline() function to draw a line on the plot
abline(fit)
# the fit object is kind of complicated
# it's got lots of stuff in it
names(fit)
# however the slope of the line can be found by looking
# at the second coefficient
fit$coef[2]
# use the slope to calculate the doubling time of the
# cells during their exponential growth phase
# the formula is log(2)/k where k is the growth rate (slope from the curve)
log(2)/fit$coef[2]
# write the doubling time on the curve
text(800,-2,"Doubling Time = 130 minutes")
```


